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Numerical Dispersion Relation for FDTD
Method in General Curvilinear Coordinates

Fengchao Xiao and Hatsuo Yabdember, IEEE

Abstract— The numerical dispersion relation (NDR) of the
finite-difference time-domain method in general curvilinear co-
ordinates (FDTD-GCC) is discussed for a two-dimensional (2-D)
uniformly skewed mesh. The analysis shows that the average
scheme, which is being used in the FDTD-GCC method, causes an
additional numerical dispersion error. When this dispersion error
is considered, the FDTD-GCC method holds the same NDR as
that of the FDTD discrete surface integral (FDTD-DSI) method .
It also indicates that the stable range of the FDTD-GCC method,
with respect to the skewing angle in the 2-D case, is narrowed
due to the average scheme.

I. INTRODUCTION

ECENTLY, the numerical dispersion relation (NDR) of
the nonorthogonal finite-difference time-domain (FDTD)
method has been reported by several authors [1]-[3]. Navaﬁi& 1. Skewed mesh geometry and the field evaluation points on a fi-
et al. [1] have given out a general formula for the NDRnite-difference cell.
of the FDTD method in general curvilinear coordinates
(FDTD-GCC). By discretizing Ampere’s and Faraday’s laws

Ray [2] has provided a dispersion expression for a genegr]wployed, while Ray’s dispersion expression will be derived

. . When the dispersion error caused by the average scheme
_nongrthogo_nal algorithm. The NDR given by Navaebal. is considered. Further, the stable range of the FDTD-GCC
is slightly different from that provided by Ray. Navaret al. method. with respect to the skewing anale in the 2-D case
said that it might be due to some mistake in [2]. ®hial. ' P g ang '

[3] have developed a rigorous derivation of the NDR for th\évIII be narrowed about 20due to the average scheme.
FDTD discrete surface integral (FDTD-DSI) technique. They

addressed that the FDTD-GCC and the FDTD-DSI methodg. EDTD—GCC A.GORITHM AND THE AVERAGE SCHEME
do not have the same NDR. The NDR presented by Narro
al. [1] is correct for the FDTD-GCC method, while the NDPb
o e sy VEGS1 (5, or exampe, the lecri el i e
in a two-dimensional (2-D) uniformly skewed mesh. Thé:urwlmear space can be expanded as
FDTD-GCC method uses the covariant and contravariant

components of the electric and magnetic fields as the unknown F= Z E'd, E= Z E,d (1)
variables. In the calculation procedure, the contravariant com-
ponents of the fields must be computed from the covariant
components, or vice versa. This requires all three of thehere the coefficient&’ and E; are called the contravariant
corresponding components. However, these components afiel covariant components of the electric field, respectively.
not known in the finite-difference cell at the same locationghe contravariant and covariant components are related by
therefore, an average scheme is employed [4]-[7]. In our

The general curvilinear coordinates systerh, ¢:2, %) may
e characterized by the unitary vectagsor by the reciprocal

=1 =1

analysis, the NDR of the FDTD-GCC method for a 2-D 3 i ‘ 5.
uniformly skewed mesh will be developed in two cases—the E; =Y g;E, E'=) g'E, (2)
case of employing the average scheme and that without j=l1 =1

using this scheme. It will be shown that the average scheme y ,
causes an additional numerical dispersion error. Navarr§¥ereg;; = d; - d; andg” =a' - a’.

formula will be obtained only when the average scheme is notWe consider here th&'E with respect tou® case [2] in
a source-free uniform linear media shown in Fig. 1. In this

a
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space, Maxwell's equations are expressed as S
e
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Fig. 2. Normalized phase velocity,/c versus propagation angle in
where the indicesI(.J) and the incrementg\y! and Ay?  degree for various skewing anglésof the grid withAul = Au? = 0.1
— Ayl
are referenced to Fig. 1. Note that on the right-hand sides Bf <2t = 2u /2
the above equations there appear the covariant components
of the electric and magnetic fields, whereas the componefd3 leads to

on the left-hand sides are the contravariant components. Once 5 . WAL Af
the contravariant components of the fields are calculated, the Hy Sln(T) = Lusin 0
covariant components must be computed by using (2). For the 1 oy A
2-D case, it follows from (2) that -{M[Eg sin( 5 )
n+1/2  _ p1n41l/2 2n+1/2 1

E1|I,J+1/2 =E |1,J+1/2 +cosbE |I,J+1/2' (6) + E} cos Hsin(%)]
Similarly, we can get the equations for the remaining compo- 1 L kA2
nents. From Fig. 1 we can see that the index#8rin (6) does - m[Eo sin( )
not have the physical space meaning, because the contravariant ) Ky A2
components! and E2 are not known at the same locations. + Ej cos 0'sin( It )

Equation (6) is written out just for the theoretical numerical

dispersion analysis in the next section, and we denote this,g:t'%On uging (8) and the_ solutions of oth_er components and
the nonaverage case. introducing (4) and (5) into (9), we obtain the NDR of the

In the actual calculation, an average scheme that approxP TD~GCC method in the nonaverage case

mates the component value by averaging the four neighboring sinQ(%wAt) 1 1 . o kcosalAul
values is employed [4]-[7]. For the 2-D uniformly skewed (A2 sin? 9{(Au1)2 sin( 5 )
meshes, it is in the form 1 kcos(a — 8) Au?
+ sin?[ ]
n+1/2 n+1/2
E1|I,J+/1/2 = E1|I,J+/1/2 (Au?)? 2 .
1 nt1/2 nt1/2 B 2cosf .  kcosalAu
T 7cos 9(E2|I—1//2,J + E2|I+1//2,J Aul AuZ sin( 2 )
n+1/2 n+1/2 - 2
+ E2|Ij1//2,J+1 + E2|I-—||——1//2,J+1)' () -sin[—k Cos(a2 6)Au 1} (10)
The equations of the remaining components can be obtainggation (10) is the same as the formula given by Navarro
by straightforward permutation of indices. et al. [1].
In the same manner, using (7) we get the NDR of the
[ll. DISPERSIONANALYSIS FDTD-GCC method in the average case

The dispersion of the FDTD-GCC method is analyzed by Sin2(%wAt) 1 1 o, kcosaAul
assuming a plane wave propagating on the uniform skewed (cAt)? = Sin29{(Au1)2 sin™( B )
mesh. Letw be its angular frequencyy be its propagation 1 kcos(a — 0) Au
angle measured from the positiveé axis, andk; = kcosa + V) sin?[ ]
and ky = kcos(a — 6) be theu! and«? components of its (Au?) 2
numerical wavenumbek, respectively. We can assume _ _ cosb sin(k cos aAul)

112 ' ) ) 2Aut Au?
B! = Egelthlau ke et —wlntl/2) A1 (8) -sinf[k cos(a — 8) Au?]}. (11)

and the solutions for the remaining components. Using thelSguation (11) is identical to that given by Ray [2] and 8hal.
trial solutions and substituting (6) into the difference equatid]. For the TM case, the dispersion relations are obtained in a
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manner similar to that used for the TE case and are found tothe stable range. If we take the effect of the average scheme
the same as (10) and (11), respectively, for the nonaverage atd account, the stability criterion for the FDTD-GCC method
average case. Some typical dispersion results by solving (¥@) differ from that given by [6]; this is being investigated
and (11) are given in Fig. 2. In this figure, the grid spacing presently.

chosen in terms of the wavelength Az! = Au? = 0.1).
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