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Numerical Dispersion Relation for FDTD
Method in General Curvilinear Coordinates
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Abstract— The numerical dispersion relation (NDR) of the
finite-difference time-domain method in general curvilinear co-
ordinates (FDTD–GCC) is discussed for a two-dimensional (2-D)
uniformly skewed mesh. The analysis shows that the average
scheme, which is being used in the FDTD–GCC method, causes an
additional numerical dispersion error. When this dispersion error
is considered, the FDTD–GCC method holds the same NDR as
that of the FDTD discrete surface integral (FDTD–DSI) method .
It also indicates that the stable range of the FDTD–GCC method,
with respect to the skewing angle in the 2-D case, is narrowed
due to the average scheme.

I. INTRODUCTION

RECENTLY, the numerical dispersion relation (NDR) of
the nonorthogonal finite-difference time-domain (FDTD)

method has been reported by several authors [1]–[3]. Navarro
et al. [1] have given out a general formula for the NDR
of the FDTD method in general curvilinear coordinates
(FDTD–GCC). By discretizing Ampere’s and Faraday’s laws,
Ray [2] has provided a dispersion expression for a general
nonorthogonal algorithm. The NDR given by Navarroet al.
is slightly different from that provided by Ray. Navarroet al.
said that it might be due to some mistake in [2]. Shiet al.
[3] have developed a rigorous derivation of the NDR for the
FDTD discrete surface integral (FDTD–DSI) technique. They
addressed that the FDTD–GCC and the FDTD–DSI methods
do not have the same NDR. The NDR presented by Navarroet
al. [1] is correct for the FDTD–GCC method, while the NDR
given by Ray [2] is applicable to the FDTD–DSI method.

This letter will discuss the NDR of the FDTD–GCC method
in a two-dimensional (2-D) uniformly skewed mesh. The
FDTD–GCC method uses the covariant and contravariant
components of the electric and magnetic fields as the unknown
variables. In the calculation procedure, the contravariant com-
ponents of the fields must be computed from the covariant
components, or vice versa. This requires all three of the
corresponding components. However, these components are
not known in the finite-difference cell at the same locations,
therefore, an average scheme is employed [4]–[7]. In our
analysis, the NDR of the FDTD–GCC method for a 2-D
uniformly skewed mesh will be developed in two cases—the
case of employing the average scheme and that without
using this scheme. It will be shown that the average scheme
causes an additional numerical dispersion error. Navarro’s
formula will be obtained only when the average scheme is not
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Fig. 1. Skewed mesh geometry and the field evaluation points on a fi-
nite-difference cell.

employed, while Ray’s dispersion expression will be derived
when the dispersion error caused by the average scheme
is considered. Further, the stable range of the FDTD–GCC
method, with respect to the skewing angle in the 2-D case,
will be narrowed about 20due to the average scheme.

II. FDTD–GCC ALGORITHM AND THE AVERAGE SCHEME

The general curvilinear coordinates system ( ) may
be characterized by the unitary vectorsor by the reciprocal
unitary vectors [8]. For example, the electric field in the
curvilinear space can be expanded as

(1)

where the coefficients and are called the contravariant
and covariant components of the electric field, respectively.
The contravariant and covariant components are related by

(2)

where and .
We consider here the with respect to case [2] in

a source-free uniform linear media shown in Fig. 1. In this
figure, the positive axis is rotated an angle from the
positive axis and the axis is perpendicular to the
plane. After the central difference approximation in time and
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space, Maxwell’s equations are expressed as

(3)

(4)

(5)

where the indices ( ) and the increments and
are referenced to Fig. 1. Note that on the right-hand sides of
the above equations there appear the covariant components
of the electric and magnetic fields, whereas the components
on the left-hand sides are the contravariant components. Once
the contravariant components of the fields are calculated, the
covariant components must be computed by using (2). For the
2-D case, it follows from (2) that

(6)

Similarly, we can get the equations for the remaining compo-
nents. From Fig. 1 we can see that the index forin (6) does
not have the physical space meaning, because the contravariant
components and are not known at the same locations.
Equation (6) is written out just for the theoretical numerical
dispersion analysis in the next section, and we denote this as
the nonaverage case.

In the actual calculation, an average scheme that approxi-
mates the component value by averaging the four neighboring
values is employed [4]–[7]. For the 2-D uniformly skewed
meshes, it is in the form

(7)

The equations of the remaining components can be obtained
by straightforward permutation of indices.

III. D ISPERSIONANALYSIS

The dispersion of the FDTD–GCC method is analyzed by
assuming a plane wave propagating on the uniform skewed
mesh. Let be its angular frequency, be its propagation
angle measured from the positive axis, and
and be the and components of its
numerical wavenumber, respectively. We can assume

(8)

and the solutions for the remaining components. Using these
trial solutions and substituting (6) into the difference equation

Fig. 2. Normalized phase velocityvp=c versus propagation angle� in
degree for various skewing angles� of the grid with�u1 = �u2 = 0:1�0
and c�t = �u1=2.

(3) leads to

(9)

Upon using (8) and the solutions of other components and
introducing (4) and (5) into (9), we obtain the NDR of the
FDTD–GCC method in the nonaverage case

(10)

Equation (10) is the same as the formula given by Navarro
et al. [1].

In the same manner, using (7) we get the NDR of the
FDTD–GCC method in the average case

(11)

Equation (11) is identical to that given by Ray [2] and Shiet al.
[3]. For the TM case, the dispersion relations are obtained in a
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manner similar to that used for the TE case and are found to be
the same as (10) and (11), respectively, for the nonaverage and
average case. Some typical dispersion results by solving (10)
and (11) are given in Fig. 2. In this figure, the grid spacing is
chosen in terms of the wavelength as .
It is shown that the FDTD–GCC method in the nonaverage
case exhibits less dispersion than that of the average case.
Furthermore, the FDTD–GCC method in the nonaverage case
and the average case have different stable range with respect
to the skewing angle. When is maintained,
the stable range of the former is while the stable
range of the latter is about , narrowed about .

IV. CONCLUSION

This letter has demonstrated that for a 2-D uniformly
skewed mesh the FDTD–GCC and FDTD–DSI methods have
the same NDR. The average scheme of the FDTD–GCC
method also causes numerical dispersion error. Ray’s disper-
sion expression, the NDR correct for the FDTD–DSI method,
is also applicable to the FDTD–GCC method. The formula
of Navarroet al. neglected the effect of the average scheme,
therefore it is not applicable to the actual calculation case.
Their formula is correct only if the three components of the
fields are evaluated at the same locations. This will result in
a marked increase in the number of field components and the
computer resources needed, however. Another effect of the
average scheme to the FDTD–GCC method is the shrink of

the stable range. If we take the effect of the average scheme
into account, the stability criterion for the FDTD–GCC method
will differ from that given by [6]; this is being investigated
presently.
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